ON THE OSCILLATION OF THE SOLUTIONS TO
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ABSTRACT. A new criterion for the oscillation of the solutions to
linear difference equations with variable delay is established. This
criterion is based on a new fundamental lemma, which provides
a useful inequality for the nonoscillatory solutions of the delay
difference equations considered.

1. INTRODUCTION

In the last two decades, the study of difference equations has at-
tracted significant interest by many researchers. This is due, in a large
part, to the rapidly increasing number of applications of the theory of
difference equations to various fields of applied sciences and technology.
In particular, the oscillation theory of difference equations has been ex-
tensively developed. See [1—27] and the references cited therein. The
present paper deals with the oscillation of linear difference equations
with variable delay. ‘

Consider the delay difference equation

() Az(n) + p(n)z(r(n)) =0,
where (p(n))n>0 is a sequence of nonnegative real numbers, and (7(n))nso
15 a sequence of integers such that

T(n)<n—1 foralln>0, and lim 7(n)= co.

n—oo

Here, A stands for the usual forward difference operator defined by
Ah(n) = h(n+1) — h(n), n>0,
for any sequence of real numbers (h(n)),>0.
Set
k=— 1:?512'1101 7(n).
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(Clearly, k is a positive integer.)

By a solution of the delay difference equation (1.1), we mean a se-
quence of real numbers (z(n)),>_x which satisfies (1.1) for all n > 0.
It is clear that, for each choice of real numbers c¢_z, c_gy1, ..., €1, Co,
there exists a unique solution (z(n))n>—_r of (1.1) which satisfies the
initial conditions z(—k) = c_k, z(—k 4+ 1) = c_g41, ..., z(—1) = c_q,
z(0) = co-

As usual, a solution (z(n))n>—x of the delay difference equation (1.1)
is called oscillatory if the terms z(n) of the sequence are neither even-
tually positive nor eventually negative, and otherwise the solution is
said to be nonoscillatory.

In the special case where the delay (n — 7(n)).>0 is a constant, the
delay difference equation (1.1) becomes

(1.2) Az(n) +p(n)z(n — k) =0,

where k is a positive integer.
In 1989, Erbe and Zhang [8] established that all solutions of (1.2)
are oscillatory if

k

(1.3) lim inf p(n) > Fre

or

(1.4) lim sup Z p(j) > 1.
n—oo Gl

In the same year, 1989, Ladas, Philos and Sficas [13] proved that a
sufficient condition for all solutions of (1.2) to be oscillatory is that

o 1 n—1 - kk
(1.5) hﬂgf [k j;kp(J)] rs (k + DF
(Clearly, condition (1.5) improves (1.3).) A substantial improvement
of this oscillation criterion has been presented, in 2004, by Philos,
Purnaras and Stavroulakis [19].

Since 1989, a large number of related papers have been published.
See [2—7, 10—12, 14—27] and the references cited therein. Most of
these papers are concerning the special case of the delay difference
equation (1.2), while a small number of these papers are dealing with
the general case of the delay difference equation (1.1), in which the
delay (n — 7(n))n>0 is variable.

It is interesting to establish sufficient oscillation conditions for the
equation (1.2), in the case where neither (1.4) not (1.5) is satisfied. This
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question has been investigated by several authors. See, for example,
Chatzarakis and Stavroulakis [3] and the references cited therein.

Under the hypothesis that the sequence (7(n)),>¢ is increasing, from
Chatzarakis, Koplatadze and Stavroulakis [2], it follows that all solu-
tions of (1.1) are oscillatory if

(1.6) lim sup z": p(j) > L.

n—oo .
j=7(n)

This result generalizes the oscillation criterion (1.4). In 1991, Philos
[16] extended the oscillation criterion (1.5) to the general case of the
delay difference equation (1.1). More precisely, it has been established
in [16] that, if the sequence (7(n))>¢ is increasing, then the condition

n—7(n)
(1.7) liminf Z V| > limsup ip=7n)) .
n—00 T(TL) Pl e (n _ ’I‘(‘TL) + 1)11. T(n)+1
suffices for the oscillation of all solutions of (1.1).

As it has been mentioned above, it is an interesting problem to find
new sufficient conditions for the oscillation of all solutions of the delay
difference equation (1.1), in the case where neither (1.6) nor (1.7) is
satisfied. Very recently, Chatzarakis, Koplatadze and Stavroulakis [2]
investigated for the first time this question for the delay difference
equation (1.1) in the case of a general delay argument 7(n) and derived
a lemma and a theorem which, in the special case where the sequence
(7(n))n>o0 is increasing, can be formulated as follows:

Lemma 1.1 ([2]). Assume that the sequence (T(n))n>0 s increasing,
and set

n—1

(1.8) a=lminf »" p(j).

n—00

j=7(n)

Let (z(n))n>_k be a nonoscillatory solution of the delay difference equa-
tion (1.1). Then we have:
(i) If 0<a<1, then

. z(n+ 1)
- "R

>(1-v1-a)*
(i) If 0 < a <1 and, in addition,
(1.10) p(n) >1—-+V1—a fordll large n,
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then
z(n+1) 1—v1-a
(1.11) liminf o > as e

Theorem 1.1 ([2]). Assume that the sequence (7(n))n>o is increas-
ing, and define a by (1.8). Then we have:
(I) If 0 < a <1, then the condition
(1.12) lim sup Z (j))>1— 1—a)
T j=r(n)
is sufficient for all solutions of the delay difference equation (1.1) to be

oscillatory.
(I) If 0 < a <1 and, in addition, (1.10) holds, then the condition

- 1—+vV1—«
1.13 lim sup p(J)>1—a——m—
(1.13) mawp 3 20) e

is sufficient for all solutions of (1.1) to be oscillatory.

In this paper, new oscillation criteria for the solutions of (1.1) are es-
tablished, which substantially improve the corresponding criteria in 2],
as well as all the known corresponding criteria concerning the special
case of the equation (1.2).

Our main result will be stated and proved in Section 3. Section 2
is devoted to establishing a basic lemma, which plays a crucial role in
proving our main result.

2. A BASIC LEMMA

The proof of our main result (i.e., of Theorem 3.1 given in the next
section) is essentially based on the following lemma.

Lemma 2.1. Assume that the sequence (7(n))a>o0 s increasing,
and set

n—1
(2.1) a=liminf Y p(j).
j=r(n)

Let (z(n))n>—« be a nonoscillatory solution of the delay difference equa-
tion (1.1). Then we have:
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i) fO<a<i, then

(2.2) lim inf %%% > (1—a—vi-2a).

(ii) If 0 < a < 6 —4+/2 and, in addition,
(2.3) p(n) > % for all large n,
then

0L  Hmmieotd . (2 3a—VAi—12a+a?).

n—00 :E(T TL)) - 4

Note. H0<a§%,then1—2a20and

0<1(1—a—~\/1-2a)<%.

Also, when 0 < a < 6 —4v/2 (clearly, 6 — 4v/2 < 1), we have 4 — 120+
a? >0 and

1 1
“(2—-30—+v1_ 2) =
0<4(2 R1s" 4— 120+« <2

Moreover, provided that 0 < & < 6 — 44/2, we also have

1
1(2—3&—-\/4—120.4—&2 >%(1—a—-\/1—2a).

Therefore, in the case where 0 < o < 6—4+/2 and (2.3) holds, inequality
(2.5) guarantees that (2.4) is an improvement of (2.2).

(2.5)

Proof of Lemma 2.1. Since the solution (z(n))n>_s of the delay
difference equation (1.1) is nonoscillatory, it is either eventually positive
or eventually negative. As (—z(n))n>_s is also a solution of (1.1), we
may (and do) restrict ourselves only to the case where z(n) > 0 for all
large n. Let p > —k be an integer such that z(n) > 0 for all n > p, and
consider an integer r > 0 so that 7(n) > p for n > r (clearly, r > p).
Then it follows immediately from (1.1) that Az(n) < 0 for every n > r,
which means that the sequence (z(n))n>- is decreasing.

Assume that 0 < a < 1, where « is defined by (2.1). Consider an
arbitrary real number € with 0 < ¢ < . Then we can choose an integer
np > 7 such that 7(n) > r for n > ngy, and

n—1
(2.6) Z p(j) > a—e for all n > ny.

3=7(n)
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Furthermore, let us consider an arbitrary real number w with 0 < w <
a — €. We will establish the following claim.

Claim. For each n > ng, there exists an integer n* > n such that
T(n*) <n—1, and

2.7) > (i) 2w

and

(2.8) Z p(j) > (@ —¢€) —w.
j=r(n*)

To prove this claim, let us consider an arbitrary integer n > ngp.
Assume, first, that p(n) > w, and choose n* = n. Then 7(n*) = 7(n) <
n — 1. Moreover, we have

ZPU) = Zp(j) =p(n) >w

and, by (2.6),
n—1 n—1
3 si)= Y pi)za-e> (@-g-w,
j=7(n*) j=7(n)

So, (2.7) and (2.8) are fulfilled. Next, we suppose that p(n) < w. It is
not difficult to see that (2.6) guarantees that

oo
> p(j) = oo.
4=0
In particular, it holds
> p(j) = 0.
j=n
Thus, as p(n) < w, there always exists an integer n* > n so that
n*—1
(2.9) Z p(j) <w
i=n

and (2.7) holds. We assert that 7(n*) < n — 1. Otherwise, 7(n*) > n.
We also have 7(n*) < n* — 1. Hence, in view of (2.9), we get

n*—1

> ) < ni p(j) < w.

j=r(n) 5=n
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On the other hand, (2.6) gives
n*—1
Z p(j) > a—e>w.
j=(n*)
We have arrived at a contradiction, which shows our assertion. Fur-
thermore, by using (2.6) (for the integer n*) as well as (2.9), we obtain

S sl = 3 o) - Y p) > (=€) —w
j=r(n*) jer(m) j=n

and consequently (2.8) holds true. Our claim has been proved.

Next, we choose an integer N > ng such that 7(n) > ng for n > N.
Let us consider an arbitrary integer n > N. By our claim, there exists
an integer n* > n such that 7(n*) < n—1, and (2.7) and (2.8) hold. By
taking into account the facts that the sequence (7(s))s>o is increasing
and that the sequence (z(t)):>, is decreasing and by using (2.7), from
(1.1), we obtain

z(n) — z(n* +1) = ZP(J)E(’F(J)

ZP(J)] z(r(n%)) 2 wa(r(n"))

and consequently
(2.10) z(n) > z(n* + 1) + wz(r(n*)).

Furthermore, by taking again into account the facts that (7(s))s>0 is
increasing and that (z(f))s, is decreasing and by using (2.8), from
(1.1), we derive

z(r(n")) —z(n) = i p(5)z(7(7)) = { 2_: p(j)] z(r(n—1))

i=r(n*) j=r(n*)
[(a—¢) —w]z(r(n—1))

and so
(2.11) z(1(n*)) > z(n) + [(a — €) — w]z(r(n — 1)).
By (2.10) and (2.11), we get
z(n) > z(n*+1)+wz(r(n*)) > wz(r(n*) > w{z(n) + [(@ — €) — w]z(r(n — 1))}
and hence

z(n) > w%—“’m(n —1)).
We have thus proved that
(2.12) z(n) > whiz(r(n—1)) forall n> N,
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where

Ay = (d—¢€)—w

1—itw
Now, let n be an arbitrary integer with n > N. By using our claim,
we conclude that there exists an integer n* > n such that 7(n*) <
n—1, and (2.7) and (2.8) are satisfied. Then (2.10) and (2.11) are also
fulfilled. Moreover, in view of (2.12) (for the integer n* + 1), we have

(2.13) z(n* + 1) > whiz(7(n*)).
By the use of (2.10), (2.13) and (2.11), we obtain
z(n) > z(n* +1) +wz(r(n*)) > whz(r(n*)) + wz(r(n*))

= w(h + Dz(r(n*) > w(A + 1) {z(n) + [(a — €) — w]z(r(n — 1))},
which gives

1 —w(A + 1D]z(n) > w(h + D[(a — €) — w]z(r(n —1)).
This implies, in particular, that

1—w()\1+1) > 0.
Consequently,
(M +D[(a—€) —u]
1= wOn £ D z(r(n —1)).

Thus, it has been shown that

z(n) > whez(r(n — 1)) for alln > N,

z(n) > w

where
NI YRSV CEDE
1-— w()q + 1)
Following the above procedure, we can inductively construct a se-
quence of positive real numbers (A, ),>1 with

1—wA, +1)>0 (¥=1,2,..)

and
et Da—e) —uw] B
AV—I—] == l—w(Ay—Fl) (V— 1,2, ...)

such that
(2.14)  z(n) >wAz(r(n—1)) forall n>N (vr=1,2,..).
As A\, > 0, we obtain

(A1 + D[(a—¢€) —w] - (a—e)—w_

Az = 1—w(A1+1) 1—w
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ie.,, A2 > A;. By an easy induction, one can see that the sequence
(Ay)u>1 is strictly increasing. Furthermore, by taking into account the
fact that the sequence (z(t))s, is decreasing and by using (2.14) (for
n=N), we get

z(t(N — 1)) > z(N) > whz(r(N—-1)) (v=1,2,..).
Therefore, for each v > 1, we have w), < 1, ie., A, < % This
ensures that the sequence (), ),>1 is bounded. Since (A,),>1 is a strictly

increasing and bounded sequence of positive real numbers, it follows
that lim,_,, A, exists as a positive real number. Set

A= Hm Ay

v—0o0

Then (2.14) gives
(2.15) z(n) > wAz(r(n—1)) foralln > N.
By the definition of (A,).>1, we have

A+D[(a—e) —w]

A=
1-wA+1)

WA’ —[1—(a—e)JA+[([@a—e) —w] =0.

Hence, either

A=%{1—(a—e)—\/1——2(0:——6)+[(a—6)—2w]2}

or

A=i{l—(a—e)-l-\/l—?(a—ﬁ)‘F[(a“f)“‘2‘~"]2}'
In both cases, it holds
A> ul—{l—(a—e)—\/l—Z(a—e)—i—[(ame)-Zw}z}.
— 2w ‘

Thus, from (2.15), it follows that
(2.16)

2(n) > % {1-(e—9-vI—2—q+[@-9 2P} a(r(r-1)) foralln>N.

But, we can immediately see that the function

f(w):%{l—(a—e)u\/1—2(a—e)+[(a:—e)—2w]2} for 0 <w< a—e
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attains its maximum at the point w = %;=. So, by choosing w = %3,
from (2.16) we obtain
(2.17)

z(n) > % [1 —(a—€)—+v/1-2(a— e)] z(r(n—1)) foralln > N.
Inequality (2.17) gives
z(n+1) > % [1 —(a—¢€)—+v/1-2(a- e)} z(1(n)) for every n > N—1

or

z(n+1)

5
z(r(n)) ~ 2

Consequently,

timint 22D > L (o~ I 2@ 9|

w’ o(r(n)

[1—(&—6)— I—Z(a*e)] foraln> N —1.

The last inequality holds true for all real numbers € with 0 < € < a.
Hence, we can obtain (2.2). The proof of Part (i) of the lemma has
been completed.

In the remainder of the proof of the lemma, it will be assumed that
0 < a < 6 — 44/2 ( which implies that 0 < o < }) and, in addition,
that (2.3) holds. Because of (2.3), we can consider an integer L > N
such that p(n) > 5 for every n > L. Then

(2.18) p(n) > ,‘? for all n > L.

By (2.17), we have
(2.19) z(n) > 61z(r(n—1)) foralln>1L,
where

Blzé[l—(a—e)—m].

Let us consider an arbitrary integer n > L. By using (2.18) as well
as (2.19) (for the integer n + 1), from (1.1) we obtain
a—e
2

a—e
2

z(n) = z(n+1)+p(n)z(r(n)) > z(nt+1)+ z(1(n)) > 01z(1(n))+ z(7(n))

and consequently

(2.20) z(n) > (91 4 ?) 2(r(n)).
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Furthermore, by taking into account the facts that (7(s))s>o is increas-
ing and that (2(t))s, is decreasing and by using (2.6), from (1.1), we
derive

() —am) = 3 p(i)a(r()) > [ij p(j)} 2(r(n—1)) > (a—e)a(r(n—1))

j=r(n) j=7(n)

and hence
(2.21) z(7(n)) > z(n) + (o — €)z(r(n — 1)).
A combination of (2.20) and (2.21) gives
z(n) > (91 + —2~) [z(n) + (o — €)z(r(n — 1))],

1B,

P—(m+3;g]ﬂm>(@+—E*)m—adﬁn—m

This guarantees, in particular, that

= (91+a2_6) > 0.

(;la3dﬂdn—ny

So,

z(n) >

‘We have thus proved that
z(n) > Ooz(r(n—1)) foralln> L,

where

(91"‘ %) (O{— 6)

1-(
By the arguments applied previously, a sequence of positive real num-
bers (0,),>1 can inductively constructed, which satisfies

1— ( 3 O‘_E) >0 (v=1,2,..)

(0, +%%) (a—¢)
1— (6, + 25%)

this sequence is such that (2.19) holds, and

(2.22) z(n) > 0,z(r(n—1)) foraln>L (v=2,3,..).

0, =

O—€

and

91/-|-1 = (V = 1, 2, ...);



42 G. E. CHATZARAKIS, CH. G. PHILOS, AND I. P. STAVROULAKIS

By the use of the definitions of #; and 6,, it is a matter of elementary
calculations to find

Oo=1—(a—¢€) —/1—-2(a—e¢), ile, 6O;=20;.

So, 0; > 6;. By induction, we can easily verify that the sequence
(0,)y>1 is strictly increasing. Furthermore, by taking into account the
fact that (2(t))sr is decreasing and by using (for n = L) inequality
(2.22), we obtain

z(t(L—1)) > z(L) > 0,z(r(L—1)) (¥=2,3,..).

Hence, 0, < 1 for every v > 2, which guarantees the boundedness of

the sequence (6,),>1. Thus, lim,_,., 8, exists as a positive real number.
Define

Q= lim 4,.
Then it follows from (2.22) that
(2.23) z(n) > Oz(r(n—1)) foralln > L.

In view of the definition of (6,),>1, the number © satisfies

0+ %F) (a—e¢)

(
e:
1- (0 + 2

or, equivalently,

202 —[2—3(a—¢€)]O+ (a—€)?=0.

So, either
9=:ll [2—-3(&—6)—\/4—12(a—e)+(a-6)2]
0=;[2-3a-9+vi-2@-9+@—a7.

Note that, because of 0 < @ — € < 6 — 4/2, it holds
4—12(a—¢€) + (a—€)? > 0.
We always have
1
0> 1 [2--3(a-~e)— Vi 12(a—e)+(a——e)2]

and consequently (2.23) gives

z(n) > % [2 —3(a—€ —/4—-12(a—€) + (a— 6)2] z(r(n—1)) foraln > L.
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Finally, we see that the last inequality can equivalently be written
as follows

o(nt1)> ¢ [2-3(@— o) — vi-2{a— g + (@- F| 2(r(n) forn> L1,
le.,
% = i [2 3(a— \/4—12(a—6)+(a—e)2] for all n > L—1.
Therefore,

z(n + 1) 1

R ) = 1

[2 3(a— —\/4—12(0.'——6)—[—(&—6)2]-

As this inequality is satisfied for all real numbers € with 0 < € < a, we
can conclude that (2.4) holds true. So, Part (ii) of the lemma has been
proved.

The proof of the lemma is complete.

Remark 2.1. Observe the following:
(i) When 0 < a < 1, it is easy to verify that

?13-(1—(1—\/1“«20[) >(1-vi—a)’,

and therefore inequality (2.2) improves inequality (1.9).

(i) When 0 < a < 6 — 4+/2, because

1-vVi—a> "5,
we see that assumption (2.3) is weaker than assumption (1.10), and,
moreover, we can show that

d (2—304—-\/4— 12a+a2) . e Ll
4 Vvi—a
and so inequality (2.4) is an improvement of inequality (1.11).

Remark 2.2. It is an open question whether inequality (2.2) can
be improved as follows

(2.24) mmM2%(1—a—vl—2a—a2),

oo z(7(n))
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provided that 0 < o < —1 + /2. This question arises from a lemma
due to Chen and Yu [4]; according to it, if 0 < ap < (Efﬁ)"“, where
n—1
j=’n.—k
then every nonoscillatory solution of the delay difference equation (1.2)

satisfies
. . .z(n+1) _ 1
liminf ——=%>-(1—ap—+/1—-2ap—0a2 ).
nce o(n—F) = 2 ( eTVETE "‘”“)
Observe, however, that when 0 < o < 6 — 44/2, it is easy to show that
1 1
7 (2-3a-vi-120a+0?) > 5(1—&—\/1—-2a_052),

and therefore, in this case and when (2.3) holds, inequality (2.4) in
Lemma 2.1 improves the above inequality (2.24).

3. THE MAIN RESULT

Our main result is the following theorem.

Theorem 3.1. Assume that the sequence (7(n))n>o 5 increasing,
and define o by (2.1). Then we have:
(I) If 0 < a < 3, then the condition

(3.1) lim sup zn: p (5) >1—%(1—a—\/1—2a)

n—00 z
J=r(n)

is sufficient for all solutions of the delay difference equation (1.1) to be
oscillatory.

(I) If 0 < a < 6 — 42 and, in addition, (2.3) holds, then the
condition

- 1
_ ; . Ly e 5
(3.2) hi[f;}p‘z()p(_y)>l 4(2 3a— V4 12a+0z)
ji=7(n
is sufficient for all solutions of (1.1) to be oscillatory.
Proof. Suppoce, for the sake of contradiction, that the delay differ-
ence equation (1.1) admits a nonoscillatory solution (z(n))n>—%. Since

(—z(n))n>—k is also a solution of (1.1), we can confine our discussion
only to the case where the solution (z(n)),>_r is eventually positive.
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Consider an integer p > —k so that z(n) > 0 for every n > p, and
let r > 0 be an integer such that 7(n) > p for n > r (clearly, r > p).
Then from (1.1) we immediately obtain Az(n) < 0 for all n > r, and
consequently the sequence (z(n))n>, is decreasing.

Now, we consider an integer ng > r such that 7(n) > r for n > ny.
Furthermore, we choose an integer N > ng so that 7(n) > ng forn > N.
Then, by taking into account the facts that the sequence (7(8))s>o is
increasing and that the sequence (z(t)):> is decreasing, from (1.1) we
obtain, for every n > N,

z(r(n)) —z(n+1) = Y p(G)a(r() > | > p()| z(r(n)).
j=7(n) j=7(n)
Consequently,
3 ] — M or all n
D 0 Mt
which gives
B lmew 3 p6)<1-tmar 2D

j=r(n)

Assume, first, that 0 < a < 1. Then, by Lemma 2.1, inequality (2.2)
is fulfilled, and so (3.3) leads to

lim sup Z p(j)gl—%(l—a—\/l—&x),

n—Cco i
j=7(n)

which contradicts condition (3.1).

Next, let us suppose that 0 < o < 6 — 44/2 and that (2.3) holds.
Then Lemma 2.1 ensures that (2.4) is satisfied. Thus, from (3.3), it
follows that

n
1
. Ne1_Yflo o =
hﬁ:}j;p-g()p(j)_l 4(2 3a— V4 12a—|—a),
j=r(n

which contradicts condition (3.2).
The proof of the theorem is complete.

As it has already been mentioned, Theorem 1.1 is presented in [2]
in a more general form. More precisely, it is not assumed that the
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sequence (7(n))n>o is increasing, but conditions (1.12) and (1.13) are
replaced by the conditions

lim sup Z p(j) >1— (1—\/1—05)2

"7 j=o(n)
and
: 1-v1I—a
lim sup p()>1-a——-,
n—00 jzaz(n) vV 1—a
respectively, where the sequence of integers (o(n)),>0 is defined by
(3.4) ol{n) = Jnax ‘T(S) for n > 0.

Clearly, the sequence (a(n))nzo is increasing. Moreover, as it has been
shown in [2], it holds

n—1 n—1
(3.5) liminf » ° p(j) = liminf »  p(j).
j=a(n) j=r(n)

Following [2], one can use (3.5) and apply Lemma 2.1 in [2] (cf.
Philos [16] and Kordonis and Philos [10]) to establish the following
generalization of Theorem 3.1.

Theorem 3.1'. Let the sequence (0(n))n>o be defined by (3.4), and
define a by (2.1). Then we have:

(1)’ If 0 <« <1, then the condition

n

; 1
lim sup Z p(3)>1—§(1—a—\/1—2a}

n—0c0 £
j=o(n)

is sufficient for all solutions of the delay difference equation (1.1) to be
oscillatory.

(I1) If 0 < a < 6 —4v/2 and, in addition, (2.3) holds, then the
condition

lim sup Z 1—1(2 3a—\/4—l2a+a2)

is sufficient for all solutions of (1.1) to be oscillatory.
Remark 3.1. Observe the following (cf. Remark 2.1):

(i) When O < a < 3, the condition (3.1) is weaker than the condition
(1.12).
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(if) When 0 < a < 6 — 44/2, the conditions (2.3) and (3.2) are
weaker than the conditions (1.10) and (1.13), respectively.

Remark 3.2. On the basis of the lemma mentioned in Remark
2.2, Chen and Yu [4] obtained the following oscillation criterion in the
special case of the delay difference equation (1.2): Tf0 < ap < (555)F*
where

7

n—1
ap =liminf Y p(j),
j=n—k

then the condition

(3.6) lim sup Z p(4) >1—1(1 0!0-—-\/1—20!0—043)

"0 ek

implies that all solutions of (1.2) oscillate. In view of (3.6), it is inter-
esting to ask if, provided that 0 < a < —1 + /2, the condition

BT  lmep 3 p ()>1-5(1-a-vi-2a-a?)

n—r00 —'r(n)

(which is weaker than (3.1)) is sufficient for all solutions of the delay
difference equation (1.1) to be oscillatory. Nevertheless, it should be
pointed out (cf. Remark 2.2) that, when 0 < a < 6 — 44/2 and (2.3)
holds, the condition (3.2) in Theorem 3.1 is weaker than the above
condition (3.7) and especially, when o = 6 — 44/2 ~ 0.3431457, the
lower bound in (3.7) is 0.8929094, while in (3.2) is 0.7573593.

We illustrate the significance of our results by the following example.

Example 3.1. Consider the equation
Az(n) + p(n)z(n—2) =0,

where

1474 1488 6715
P(3n) = Too00° P37+ = po0> P2 = [gp5pr M =012
Here k£ = 2 and it is easy to see that

n—1 3
1474 1488 2
= lim inf ——+4—— =0.2962 — 1 ~0.2962963,

W= e ]_;2 = 70000 10000 — 02902 < (3)
and

1474 14 6715
lim sup Z p(j) = L Y = 0.9677.

10000 ~ 10000 = 10000

j=n—2



48 G. E. CHATZARAKIS, CH. G. PHILOS, AND I. P. STAVROULAKIS
Observe that
1
0.9677 > 1 — 5 (1 — o — v1I—2ag) ~ 0.967317794,

that is, condition (3.1) of Theorem 3.1 is satisfied and therefore all
solutions oscillate. Also, condition (3.6) is satisfied. Observe, however,
that

0.9677 < 1,
2\ 3
ap = 0.2962 < (5) ~ (0.2962963,

0.9677 < 1— (1 —+/T— ag)” = 0.974055774,

and therefore none of the conditions (1.4), (1.5) and (1.12) is satisfied.
If, on the other hand, in the above equation

1481 6138
p(3n) =p(Bn +1) = E

1000’ PP 2= 150000 0 L2
it is easy to see that

n—1

1481 1481
= lim inf = +
B =L > )= 10000 " 10000

j=n—2

2\ 3
= 0.2962 < (5) ~ 0.2962963,

and

1481 1481 6138

lim —0.91.
s __zﬂ:zp (%) = To000 * 10000 70000

Furthermore, it is clear that

p(n) > % for all large n.
In this case

1
091>1-7 (2 —3ap — 4/4— 1200 + ag) ~ 0.904724375,

that is, condition (3.2) of Theorem 3.1 is satisfied and therefore all
solutions oscillate. Observe, however, that

0.91 <1,
2\ 3
ap = 0.2962 < (—?;) ~ (.2962963,

0.91 < 1— (1 —vI—ag)” ~ 0.974055774,

1
g9l 21— 3 (1 —ap—14/1—2a9 —ao) ~ (.930883291,

and therefore none of the conditions (1.4),(1.5), (1.12) and (3.6) is
satisfied.
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